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t ABSTRACT
The noncentral chi-squared distribution with zero degrees of freedom is

defined as a Poisson mixture of mass at zero together with chi-squared

distributions that have even degrees of freedom. Their name is justified

by the decomposition of the classical noncentral chi-squared distribution as :
the sum of a central chi-squared component having the full number of degrees |
of freedom and an independent noncentral chi-squared component having zero
degrees of freedom. The basic properties of this one-parameter family of

distributions are given, and they are shown to be useful in the computation

of approximate critical values of a test for uniformity.
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SIGNIFICANCE AND EXPLANATION

The chi-squared family of statistical tests and probability distribu-
tions is the basis for many tests of significance and goodness-of-fit in
statistics. This paper reports the discovery of a new distribution from
this family: the noncentral chi-squared distribution with zero degrees of
freedom. This distribution cannot be defined in the conventional way, which
explains why it was unnoticed until now. However, it can be properly defined
in another way, and it leads to the previously impossible decomposition of
the classical noncentral chi-squared distribution into two parts: a
completely central component with all of the degrees of freedom, and a
completely noncentral component with no degrees of freedom.

The distribution is also useful in its own right in connection with
testing the hypothesis that given observations X],...,xn all between O
and 1 are independently chosen from the uniform distribution in (0,1).

An application is outlined in conjunction with the improvement upon

Sir R. A. Fisher's test for periodicity in a time series reported in MRC
Technical Summary Report #1843. The noncentral chi-squared distribution
with zero degrees of freedom provides much better approximate critical

values, necessary for the use of this test, than does the usual Normal or

Gaussian distribution approximation,
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The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.




THE NONCENTRAL CHI-SQUARED DISTRIBUTION WITH ZERO DEGREES
OF FREEDOM AND TESTING FOR UNIFORMITY

Andrew F. Siegel*

1. The Noncentral Chi-Squared Distribution with Zero Degrees of Freedom:
Definition and Basic Properties

The central and noncentral chi-squared distributions are fundamental

In this paper, attention is focused on an unexplored group of

distributions from this family: those with zero degrees of freedom. Their
definition and basic properties are given in this section, and an example
of their use in testing for uniformity is given in Section 2. It is

expected that many additional applications will be found in the future.

There are several reasons why the case of zero degrees of freedom
has been overlooked since Fisher, in 1928, first derived the noncentral
chi-squared distribution. First, it does not possess a probability
density function because of a discrete mass point at zero. Second, it cannot
be defined simply as the sum of independent squared normal deviates with
variance one. And third, the central chi-squared distribution with zero
degrees of freedom is identically zero, wrongly suggesting that the
general case of zero degrees of freedom would be trivial,

The noncentral chi-squared distribution, xa(x), with zero degrees
of freedom and noncentrality parameter A>0 is most directly approached
as a compound Poisson mixture of central chi-squared distributions with
even degrees of freedom. This extends the standard representation (for
example on page 132 of Johnson and Kotz, (1970)) to the case of zero
degrees of freedom. We define

-
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tools in many areas of theoretical and applied statistics (Lancaster (1969)).
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to be the result of the two-stage process in which we first choose K
from a Poisson distribution with mean A/2 so that

P(K=k) = e'*’z(x/z)k/k!. k = 0,1,2,...
and then choose

2
Yy = Xok -

when K = 0, we adopt the convention that the (central) XB distribution

is identically zero; this accounts for the discrete component of the

xa(x) distribution. Thus xa(x) is a mixture of the distributions 0,
x;. xz. x;.... with weights exp(-1/2), exp(-1/2)(A/2), exp(-A/2)(\/2)?/2,
exp(-1/2)(r/2)%/6,...

The basic properties of this distribution can be derived
directly from the compound Poisson representation. The character-
istic function, reproductivity properties, moments, cumulants,
asymptotic behavior, cumulative distribution function, and
density (to the extent that one exists) will be exhibited in
the remainder of this section.

The characteristic function of Yy, ~ xa(x) is

8,(t) = E exp(ityy) = explitA(1-2it)™1)) (1.1)

which is obtained from the Poisson mixture of the characteristic
functions (1-2it)™% of the x;k distributions. This is the same
formula obtained by substituting zero for the degrees of freedom
in the characteristic function of the classical noncentral x?

distribution.

:
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The reproductive properties of this distribution follow immediately

from its characteristic function (1.1). Let "*" denote the convolution

operator, so that F*G denotes the distribution of X+Y where X and Y are
independent random variables chosen from the distributions F and G

respectively. Then we have

2 2 F "
"o“l)"‘o“z) Xo{y*2,) (1.2)
xo{A*xg = xp(2) (1.3)

b 4 2 - ?

XO(A] )‘Xn(xz) Xn(xl*xz) % (l.4)

(1.3) is of particular interest because it allows us to decompose the
x;(x) distribution into a complete central part with the full n degrees
of freedom and a noncentral part without any degrees of freedom. Thus
x»x;(x) can be decomposed as X=Y+Z where Y~xa(\) and Z*\; are independent.
Going as far back as p. 669 of Fisher (1928), the x;(x) is traditionally
decomposed as a convolution of x;(x) and x;_]. often (as in Theorem 1.1
on page 117 of Lancaster, 1969) by representing it as the sum of n
independent squared normal deviates with variance one and using a rotation
in n-space to bring the mean vector to the first coordinate axis. This
confounding of one degree of freedom with the noncentrality is no longer
necessary; a complete separation of noncentrality from all degrees of
freedom 1s now possiie.

The cumulants of Y, - xs(k) are seen from (l1.1) to be

*m °© xzm‘lmz. The moments can be found directly from a Poisson

mixture of the moments of the component central x? distributions.

The moments are
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Yy = 2% L (M) ava*ie . (1.5)
k=1

Moments and cumulants of low order are

central
m moment moment cumulant ;
1 A 0 0
2 A2+ua 4y A 4A (1.6)
3 A3e120 2420 24 24
4 A“ozuk3+1uux2¢lgzx lQZAousA? 1922

Asymptotic normality of Y, - xé(x) holds when 4 is large.

More precisely,

YX-A D
e + NCO41) as A + = (1.7)

2/
}

which is quickly proven using the characteristic function (1.1).
H Asymptotically when A is small, the positive component of
Y, ~ xg{1) tends to X;' Noting that most of the mass is at
zero in this case, we decompose Y, into the mixture
0 pr exp(=1/2)

Y, = (1.8)
Z, pr l-exp(~A/2)

so that 4y, is the conditional random variable YA‘{YA>0}’ which
is positive and continuous. In fact, 2y is the mixture of

x;,xz,x;,... with mixing probabilities pr(Kek |K>0) where K - Po(r/2).

Then using the decomposition (1.8) and the characteristic function ﬁ

(1.1) one can show that

D
r
z, * x; as A+ 0. (1.9)

—

The cumulative distribution function of vaxS(x) is
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-(A+t)/2

1 R
Fx(t) » PP(YASt) z l-e tx/2) "

- (1.10)
0 !

(T < I ]

kT L

when t>0 and is zero otherwise. These series converge quickly;
hence this formula is convenient for computing. Figure 1 shows
the cumulative distribution function F,(t) of xa(X) for various
values of M. Clearly apparent are the discontinuities at t=0

(due to the mass exp(-A/2) at zero), asymptotic normality when
A is large, and asymptotic exponentiality (x;) of the positive

component when A is small.

The density of the'x’o(x) distribution, properly speaking, does
gl, not exist due to the mass at zero. However, the positive part of this
distribution does have a “density" fx(t) in the sense that if YA~X’O(A)
and O<a<b, then
b
P(a<y,<b) = ]fA(t)dt.
a
Mixing the densities of the non-degenerate component central x?,
we find that
“(A+t)/2 = k
: 5 £,(t) = % e L (xt’f’ (1.11)
k=l ™ :
which can also be expressed as {
”i 1 -(A+t)/2 ) ﬁ
- f,(t) = 5 /(At)e Il{v(\f))
f f where I1 denotes the first modified Bessel function. This is
8 3

not a true density because its total mass is only
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P0<Y, <@) = {)fA(t)dt =1 - exp(-1/2)<]
If we normalize fx and define

gA(t) = fx(t)/(l-exp(-x/Z)) €1.12)

then gx(t) is a true density. It is the density of ZA B Yx|(Yx>0}’

the positive continuous random variable defined in (1.8).

Graphs of these "densities" fx(t) are shown in Figures 2 and 3.
Figure 2 shows the case x52, and we see clearly that they are not true
densities becau§e the -areas under the curves are not equal. This is
because as A increases, the mass exp(-A/2) at zero decreases and is
moved to the right (to the positive continuous part) increasing the
area (1-exp(-1/2)) under these curves. Again we note the exponential
(x?z) form of these curves when )\ is small, as was shown in (1.9).

The ordinate intercept fx(o) takes its maximum value of 1/(2e) at
A=2, and Figure 3 shows some "densities" fx(t) when 1>2 and this intercept
is decreasing in X. When 2=10, only a mass of .00674 remains at zero,
and we begin to see the trend towards asymptotic normality for large )

predicted by (1.7).

2. Testing for Uniformity @

The purpose of this section is to show low the noncentral chi-squared
distribution with zero degrees of freedom can be used in the approximation

of critical values for a test of uniformity.
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Many problems involvina testing a hypothesis can be reduced to the

following situation: given data X "xn-l all between 0 and 1, we

],o.

wish to test the null hypothesis that the X, were independently chosen

i
from the uniform distribution on the interval (0,1). That is, test

iid
Hot XpaeeeaX 4 —UY (0,1).

Order the data and adjoin the endpoints to obtain 0 = <X <X, ,=1.

Wiy ol
(0) (1)
Then define the spacings Yj = x(j)-x(j_]), S O (1

(n-1) “(n)

We will consider tests based on statistics of the form
n
T(n,a) = .z (Yj-a)+ £2.3)
j=1
where O<a<1 and (t)+ = max(t,0) is the positive-part function. I have
shown these statistics to be useful in testing for periodicity in a time

series (Siegel 1979b). They are sensitive to the existence of large spacings.

sThey are adaptive and continuous, for they select only the largest
spacings (those with Yj>a) and sum the excess of each such Yj above the
threshold value a.

Fisher's (1929) test for periodicity can be obtained as a special

case of (2.1) when a = a; js chosen so that

P(T(n,a;)>0) = P(m;x Yj>a;) = q (2.2)

where a is the desired level of the test and a; depends implicitely on a.
Note that if a>a; then T(n,a) has mass greater than l-a at zero
and randomization will be necessary to insure level a. Thus the 8

nonrandomized level a tests based on statistics of the form (2.1) come
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from a member of the one-parameter family of statistics T(n.ga;) where
O<g<l. ¢ =1 yields Fisher's test, while ¢ = 0 yields the useless

statistic T(n,0) = 1. A power study in Siegel (1979b) showed that the
choice ¢ = .6 yielded a good overall test with significant power gains |
over Fisher's test against certain alternatives.

The null distribution of this statistic was found to be

P(T(n.ga*)>t) = Egl ti;(-1)k*“*‘(2)(';')(";‘)tk(l-cza;-t)f‘k“ (2.3)
and critical values for n up to 50 were tabled. For large n, the terms
with alternating sign's can be quite large, leading to a serious
problem with round-off error during computation. This is why we seek the
asymptotic distribution of this statistic.

There are two candidates for the asymptotic distribution of T(n.caa):

the normal distribution and the xzo(x) distribution. This follows from

Theorems 3.2 and 4.1 of Siege! (1973a) because the distribution of V(n,a)
of that paper is identical to the distribution of T(n,a) here. Theorem
4.1 showed that T(n.ca;) actually is asymptotically normal for fixed

¢ as n+=. However, for even moderately large n, T(n.ga;) can still

=

place significant mass at zero, and the normal approximation may not be

very good. Theorem 3.2 allowed ¢ to depend on n so that the mass at

g i 5 w5
L e

e

zero was preserved in the limit, and the x’o(x) distribution was obtained.

Each of these distributions(normal and x’O(x» yields an approximate

e

o2

critical value for T(n.ga;). obtained by matching up the first two moments.

The first two moments of T(n.aa;) are the same as those calculated

for D(n.ca;) in Siegel (1978). Thus

il el

L

e

e
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ET(n.ca;) = (l-ca;)" (2.4)
and

n+1]

E(T(n,cat)]? = —2(1-cat)™ ! + (n-1)(1-2ca2)] (2.5)

The normal approximation is based on the critical values of a normal
distribution with these first two moments. The x’o(x) approximation will
be based on the critical values of cx’o(x) where the scale factor c

and the noncentrality parameter A are chosen so that cxzo(x) has (2.u)

and (2.5) as its first two moments. Using (1.6) the solution is

2(1-2a)™ V4 (n-1)(1-202) - (1) (1-ca )"
: 4(n+1)(1-ca;)"

(2.6)

c

and

A= (1-zar)e . (2.7)

Critical values for T(n,;a;) with the preferred choice ¢ = .6
were calculated exactly using (2.3) and approximately using the normal
and the xzo(x) approximations. The results are listed in Tablel for
levels a = .05 and .01, and for n = 10 through 50. Comparing these,
we see that the x’o(x) approximation is clearly superior to the normal
approximation. Note that the critical values from the xzo(x) approximation
are very close to the actual critical values, even for relatively small
values of n.

The two columns on the right-hand side of Table 1 show that the

differences between the two approximations are significant.

When n = 50 the normal approximation with nominal level a = .05 has
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actual level a = .0774, and the normal approximation with nominal level
a = .01 has actual level a = .0439. The actua) levels obtained using
the X’O(A) approximation are much closer to the nominal levels: they
are a = .0509 and a = .00985 respectively.

The reason why the normal approximation fails here is because n = 50
is not yet large enough for those asymptotics to be appropriate. The
amount of mass that T(n..Ga;) places at zero will diminish to zero in
the limit, but at level a = .01 with n = 50, there is still a mass of
.674 at zero! The X’O(A) distribution is not affected by this problem
because 1t is, like T(n.ca;) itself, a mixture of mass at zero with
positive contindous variation.

The clear recommendation is thus to use cx’o(x), where c and )\ are
found from (2.6) and (2.7), as an approximation to the null distribution
of T(n,;a;). This will still be able to handle the ultimate asymptotic
normality of T(n.ca;) because, by (1.7), xzo(x) is also asymptotically

normal as A+,
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Table ). A comparison of the exact critical values of

T(n..sa;) with the approximations calculated using the normal

distribution and the x’o(x) distribution

Critical Values Actual Level
2 2
n '6‘; Normal X O(X) Exact Normal X O(x)
10 .267 A5 .178 .181 .0816 .0529
20 .162 L0971 114 116 .0795 .0519
a=.05 30 .19 .0742 .0872 .0880 .0785 .0514

40 .0944 .0611 0715 0721 .0778  .0511
50 .0788 .0524 .0612 .0616 .0774  .0509

10 .322 128 217 214 .0467  .00951
20 .198 .0782 134 134 .0450 .00979
a=.01 30 .145 .0583 .0998 .0993 .0444 00983
40 .15 .0472 .0802 .0799 .0441  ,00984

50 .0957 .0401 .0676  .0673 .0439  .00985




References

q Fisher, Sir R. A. (1928). The General Sampling Distribution of
i the Multiple Correlation Coefficient. Proceedings of the
Royal Society A 121, 654-673.

Fisher, Sir R. A. (1929). Tests of Significance in Harmonic
Analysis. Proceedings of the Royal Society A 125, 5u4-59.

Johnson, N. L. & Kotz, S. (1970). Distributions in Statistics: i
Continuous Univariate Distributions = 2. New York: Wiley. |

Lancaster, H. 0. (1969). The Chi-Squared Distribution. New
York: Wiley.

Siegel, A. F. (1978). Random Arcs on the Circle. Journal of
Applied Probability, to appear.

Siegel, A. F. (1979a). Asymptotic Coverage Distributions on
the Circle. Annals of Probability, to appear.

Siegel, A. F. (1979b). Testing for Periodicity in a Time Series.
Journal of the American Statistical Association, to appear.




Wm TR TI— i

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered) . .
READ INSTRUCTIONS

REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

[+] NUM 2. GOVY ACC!“IOQC “01 v uMBLR
1903 / (4

#0 TITLE (and Subtitle)

COVERED

specific

2 . . ’
JHE NONCENTRAL CHI-SQUARED QISTRIBUTION WITH ﬁ—'—;‘emﬂq period.

§ PERFORMING ORG. REPORT NUMBER

ERO DEGREES OF _FREEDOM AND TESTING FOR
NIFORNITY

7. AU THOR(e)

J{Andrew F./Siegel /

TRACT OR GRANT NUMBE R s

: DAAG29-75-C-p024 =7
"/ _~MCS75-17385 AG

9. PERFORMING ORGANIZATION NAME AND ADDRESS T TR RK TR “: VASK
Mathematics Research Center, University of ork Unit Nusber & [Proba
610 Walnut Street Wisconsin pility, Statishcs, and
Madison, Wisconsin 53706 z Combinatorics)
11. CONTROLLING OFFICE NAME AND ADDRESS | s msmoaroare
See Item 18 below. @ " De 78 | -
. NUMBER-O5-2A0ES
. 15 :

- 1Sa. DECLASSIFICATION "DOWNGRAL
SCHEDU

[T WONITORING GENCY NAME & ADDRESS(If different 18. SECURITY CLASS. (of thia report)
7 / ; UNCLASSIFIED é

16. DISTR BUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

|?l/~\~ﬂ { /

[17. DISTRIBUTION STATEMENT (of the abatract entered In Block 20, If different from (m:c) P |

18. SUPPLEMENTARY NOTES
U. S. Army Research Office National Science Foundation
P. 0. Box 12211 Washington, D. C. 20550
Research Triangle Park )

North Carolina 27709

19. KEY WORDS (Continue on reverse side il necessary and identity by block number)

S = {
i
1

Compound Poisson distribution !
Goodness-of-fit testing |
Testing for periodicity g

Wncr (Continue on reverse side If necessary and Identifty by block number) ol | !
’ he noncentral chi-squared distribution with zero degrees of freedon i |
{ defined as a Poisson mixture of mass at zero together with chi-squared distribu]
‘ tions that have even degrees of freedom. Their name is justified by the f
' decomposition of the classical noncentral chi-squared distribution as the sum
of a central chi-squared component having the full number of degrees of froeedon
and an independent noncentral chi-squared component having zero degrees of

freedom. Th m
frsedin;n To LS proverties of this quy-parameter fomdly of gistribution

DD , 55"y 1473  Eoimion oF 1 oV 68 1s OBsOLETE "\WNGMSSI FIED )

SECURITY CLASSIFICATION OF THIS PAGE (Whan Data Fatere ((




